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Abstract

In this paper we presenta tednique for certifying
domain-specifiqproperties of code genemted using pro-
gramsynthesisechnolagy. Programsynthesiss a maturing
technology that genematescodefroma high-level specifica-
tion in a particular domain. For acceptanceof the gen-
eratedcodein safety-criticalapplications,it mustbe thor-
oughlytested(an estimatedB0% of total softwae develop-
mentcostsin generl). We showhowthe programsynthesis
systemAUTOFILTER canbe extendedo genemate not only
codebut alsoproofsthatpropertiesholdin thecode Wetar-
get propertiesthat are suficiently complex that they cannot
be provedautomaticallyfromthe codealoneg but which can
be provedusingdomainknowledg in the synthesisystem
producingproofsthat canbe easilychedkedby anindepen-
dentverifier Thistechniquehasthe potentialto reducethe
costsassociatedvith testinggeneatedcode

1. Intr oduction

Guaranteeingropertiesof codehaslong beena major
goalof the FormalMethodscommunityandhasbeentack-
led usingstaticanalysismodelcheckingandtheoremprov-
ing methods. Of these,staticanalysisis perhapghe most
practicalandcommercialsystemssuchasPolySpacg13],
which is basedon abstractinterpretation,are now emeg-
ing. Unfortunately practicalapplicationsof static analy-
sis techniquesare limited to checkingprogramminglan-
guagelevel propertiessuchasillegal type conversions,in-
valid arithmeticoperationge.g.,divisionby zero)andover-
flow/underflav. Whilst important,suchefforts do not ad-
dresgheissueof how to guaranteenorecomplex properties
andtraditionaltechniquesdasedon modelcheckingand/or
theoremproving arenotyetviable.

Another growth areain the last coupleof decadesas
beencodegeneration.Although commercialcodegenera-
tors aremostly limited to generatingstub codesfrom high
level modelg(e.g.,in UML), programsynthesisystemshat
cangeneratédully executablecodefrom high level beha-
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ioral specificationsarerapidly maturing(see,for example,
[16, 15]), in somecasedo the point of commercialization
(e.g.,SciNapsd1]). In programsynthesisthereis potential
for automaticallyverifying moreinterestingpropertieshe-
causeadditionalbackgroundnformation— from the spec-
ification andthe synthesiknowledgebase— is available.
The claim madein this paperis that by couplingtogether
programsynthesisndpropertyverification,it is possibleto
automaticallycertify thata pieceof generated¢odesatisfies
certaincomplex properties We illustratethis claim usinga
techniqueto certify propertiesof navigationsoftware.

Themotivationfor this couplingis bestillustratedby ex-
ample.A commonsoftwaredevelopmentaskin the space-
craft navigationdomainis to designa systemthat canesti-
matethe attitudeof a spacecraftThis s typically mission-
critical software becausean accurateattitude estimateis
necessaryor the spacecraftontrollerto tilt the craft’s so-
lar panelstowardsthe sun. Attitude estimatordor different
spacecrafaregenerallyvariationson atheme andyet, cur-
rently, thereis very little software reusebetweenprojects.
Programsynthesisoffers the potentialto reducedevelop-
mentcoststhroughrapidprototypingandarapidturnaround
cycle. However, for thesekinds of applicationsponly 20%
of effort is spentin software development,the other 80%
beingspentbnvalidationof thecodé, includingcodewalk-
throughs,formal andinformal testing. To reducethe 80%
developmentostsit is necessaryo providetechniqueshat
canavoid codeinspectionsor reducetesting. We believe
thatpropertyverificationcanreduceestingtime and,more-
over, thatmary propertiescannotbe verified automatically
withouttheapplicationof programsynthesisVerifying that
a stateestimatorimplementatioractually produces math-
ematically optimal estimatecannotbe done automatically
usingthe codealone,becausehe codedoesnot reflectall
the informationneededsuchasthe statisticalmodel. The
useof additionaldomainknowledgeandinformationfrom
thesynthesiprocesallows suchverificationtasksto benot
only possible but alsoautomated.

Our approachto this problem is to certify crucial
domain-specifipropertiesn safetyor missioncritical do-

1personatommunicatiorfrom the JetPropulsionLaboratory(JPL).
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Figure 1. Domain-specific certifier.

mains. A domain-specificsafetypolicy certifier was pre-
sentedin [8], for the domainof coordinateframeswhich
is also of crucial importanceto astronomicalnavigation.
Conceptually a domain-specificcertifier consistsof three
maincomponentsasshowvn in Figurel. The programming
languageand the abstractdomainare linked via domain-
specificabstracsymbolicevaluation.Many softwareprod-
ucts are developedfor domainsthat are quite complex
andinvolve a significantbody of mathematicaknowledge,
whichis notthecasefor thesemantic®f standargrogram-
ming languagesn which theseprogramsare usuallywrit-
ten. Consequentlyappropriatedomain-specificabstac-
tions of programminganguageconstructinto domainsof
interestare requiredin orderto perform domain-specific
analysisof software. Unlike in standardstatic analysisof
programswhereabstractioormeangyroupingvariousvalues
of the concretedomaininto an abstractone (suchas,each
real numberlarger than 1 is “large positive”), in domain-
specificanalysigheremight be norelationshipbetweerthe
concreteand the abstractdomains;for example, 2.7 can
be“meter”, or “second”,or “meterxKgssecond 2", or ary
othermeasuremeninit. Onewould, of courseJike to cer
tify software as automaticallyas possible,but this is very
rarelyfeasible(dueto intractability argumentsyndclearly
closeto impossiblefor the complex domain presentedn
this paper Therefore,userinterventionis often neededo
insertdomain-specifikknowledgeinto the programsto be
certified,usuallyunderthe form of codeannotations.The
certifierin this papemeedsannotationgor modelspecifica-
tions,assertionsandproof scripts.

Our domain-specific certification approach requires
more sophisticatedreasoningthan in approachego date
for proof-carrying code(PCC)[12]. The abstractdomain
specificationis muchricher thanmemorysafety and ver-
ifying the safetyof eachline of codecanrequiretensof
thousand®f inferencesteps. The two specificationlevels,
for the programminganguageandfor the abstracdomain,

are independentlyreusable;e.g.,oncean abstractdomain
hasbeenformulatedit canbe usedto certify programswrit-
tenin variousprogrammindanguagesandcorversely pro-
gramscanbe certifiedfor variousdomain-specifiqgroper
ties. ExtendedStatic Chedker (ESC)[5, 14 is a tool that
finds programmingerrors at compile time, suchas array
index boundserrors, nil dereferencesjeadlocksandrace
conditions. The userof ESCannotateshe programswith
specificationsn a precondition-postconditiostyle (similar
to ours)whicharechecledstaticallyusingatheoremprover
for untypedpredicatecalculuswith equality Thetypesys-
tem of the targetprogramminganguageas implementedn
untypedfirst-orderlogic. The useof ESCis thereforelim-
ited to programminganguagedefinabletypesandto prop-
ertiesthatcanbeprovedautomaticallyusingeSCsinternal
theoremprover. By allowing proof scriptsasannotationsn
the programsto certify, we practically extendthe usability
of our certifiersto whaterer propertiesthat canbe proved.
However, somedomain-specifigoroofs can be very com-
plex, so, even if possiblein theory we do not anticipate
thatourdomain-specificertifierwill beusedndependently
from thesynthesiengine.

2. Domain-SpecificProgram Synthesis

Programsynthesids the generatiorof codefrom high-
level, usuallydeclaratve, specification®f the expectedbe-
havior of the code. For safety-criticalapplications,a key
concerrwhenusingsynthesigs the correctnessf thegen-
eratedcode. Traditionalapproacheso this problemusea
theorenproverto deriveacorrectnesproofandthecodesi-
multaneously Unfortunately suchapproachesarely scale
to realistic problems. Instead, successfulsynthesissys-
tems(e.g.,[1, 6]) favor a combinationof advancedknowl-
edge structuringmechanismssearchheuristicsand sym-
bolic solversto generatéusually)domain-specificode but
the correctnessf the codemustbe verified eitherby vali-
datingthe synthesisystemor throughtesting.

The key to making programsynthesissuccessfuis in
choosinga domainin which the typical problemsaresuffi-
ciently similar suchthat similar algorithmscanbe reused,
but also sufficiently differentasto make coding by hand
non-trivial. The domainof stateestimationis oneexample
of thesedomainsandis alsoanextremelywidespreadppli-
cationareaimportantto NASA andothermajorauthorities
suchasthe FAA.

AUTOFILTER is a programsynthesizefor stateestima-
tion problemg. By stateestimation,we meanestimating
the stateof an object (e.qg., its position, attitude or noise

2AUTOFILTER is a redesigned, much extended version of Am-
phion/NAV [16], implementedin Prolog. Amphion/NAV was basedon
the SNARK theoremprover which was shavn to be unsuitablefor more
complex problemsin this domainandsowasreplacedoy Prolog.



characteristicslpasedon noisy sensomeasurementsThis

is an importantproblemfound in spacecraftaircraft and
geophysicahpplications. The mostcommonway of solv-

ing a stateestimationproblemis to usea recursie update
algorithmknown asthe KalmanFilter [2] which providesa
statisticallyoptimal estimateof a statebasedon noisy sen-
sor measurementsThe Kalman Filter requiresadditional
informationto make this estimate hamelya model of the
dynamicsof the problemunderstudyanda modelof how

thesensomeasurement®lateto the state:

Try1 = Ppap + wi 1)

2 = Hyzp + vg 2

Elwg] = Elvg] =0 3)
Elwpw] ] = 6(k — i)Q (4)
Elvgv;' ]| = 6(k — i) Ry, )

x, 1S avectorof statevariablesattime £. In atypical atti-

tudeestimationproblem,for example,the statevector, zy,

mightcontainthreevariablegepresentingotationanglesof

a spacecraft.Thisis whatwill the KalmanFilter will esti-
mate.Equation(1) is theprocessnodelwhich describeshe
dynamicsof thethestateovertime® — thestateattime k+1

is obtainedby multiplying the statetransitionmatrix ®;, by

the previous statex;,. The modelis imperfect,however, as
representetdy the additionof the processoisevectorwy,.

Equation(2) is the measuremennodelandmodelsthere-

lationshipbetweerthe measurementandthe state. Thisis

necessanpecausehe stateoften cannotbe measuredli-

rectly. The measurementector, z;, is relatedto the state
by matrix Hy. vy representshe noisein this relationship.
Simplifying KalmanFilter assumptionstatethatall noises
mustbe gaussiarprocessewith zeromeanandtheremust
be no correlationbetweenthe noiseover time (see(4) and
(5) wherea " is the transposeof vectora andé(j) is the
Kronecler deltafunctionwhich evaluateso 1 whenj = 0

and 0 otherwise. ) and R;, are matriceswhich repre-
sentthenoisecharacteristicef theprocessnodelnoiseand
measuremennodelnoise,respectiely).

Given modelsof this form, a KalmanFilter canbe im-
plementedhat optimally estimateghe statevectorz;. A
schematialgorithmfor this KalmanFilter is givenin Fig-
ure 2. The estimate, i, can be proved to be an opti-
mal estimateof the state,z;, in the sensethat the mean
squarecerror (alsoknown asthe error covariancematrix),
E[(zy — 2)(zr — 21) "], is minimized (seethe next sec-
tion). Any Kalman Filter shouldsatisfythis minimization
property In Figure2, P, is theerrorcovariancematrix and
is updatedon eachiterationof thefilter. P, givesanindi-
cationof theerrorin thefilter estimatesandsois usedasa
checkwhetheror notthefilter is corverging.

Sthe formulationgiven hereis a discreteone

As anexampleof how KalmanFilterswork in practice,
considera simple spacecrafttitude estimationproblem.
Attitude is usuallymeasuredisinggyroscopeshut the per
formanceof gyroscopesiegradesover time sothe errorin
thegyroscopess correctedusingothermeasuremente,.g.,
from a startracler. In this formulation, the processequa-
tion (1) would modelhow the gyroscopesiegradeandthe
measuremergquation2) would modeltherelationshipbe-
tweenthe startracler measurementandthe threerotation
anglesthat form the state(in this case,H;, would be the
identity matrix becausetartraclkersmeasureotationangles
directly). Fromthesemodels,a KalmanFilter implementa-
tion would producean optimal estimateof the currentatti-
tude of the spacecraftwherethe uncertaintiesn the prob-
lem (gyro degradation,startracler noise, etc.) have been
minimized.

Enterprior estimatez;~ and
its errorcovarianceP,”

l

ComputeKalmangain:
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Projectahead:
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Updateestimatewith
measurementy, :
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Figure 2. Kalman Filter Loop

AUTOFILTER takes as input a mathematicakpecifica-
tion including equations(1) - (5) but also descriptionsof
the noise characteristicand filter parameters.From this
specificationjt generatesodethatimplementgsomevari-
ant of) the algorithmin Figure 2. In fact, AUTOFILTER
generategodein our own intermediatdanguagewhich is
thentranslatednto C++ or Matlah In this paper we only
considercodein theintermediatdanguaggseeFigure3 for
an exampleof its syntax). It shouldbe notedthat Figure2
representgust one of mary possiblevariationsandconfig-
urationsof thefilter. In fact,the abundanceof variationsis
what makesthis domainideal for synthesis. Examplesof
othervariationsarethe extendedkalmanfilter, theinforma-
tion filter, theunscentedilter.



i nput xhat mi n(0),
for(k,0,n) {

pm nus(0);

xhat (k) := xhatmin(k) + (gain(k) * (z(k) -
p(k) = (id(n)
xhatmn(k + 1) :
pmnus(k + 1)

phi (k) * xhat (k);

NGO kWN R

gain(k) := pminus(k) * mrans(h(k)) * mnv(h(k) * pmnus(k) * mrans(h(k)) + r(k));

(h(k) * xhatmin(k))));

- gain(k) * h(k)) * pmnus(k);

phi (k) * (p(k) * ntrans(phi(k))) + q(k);

Figure 3. Kalman Filter code calculating the best estimate incrementall y.

3. An Informal Optimality Proof

In this paper we describetechniquesfor certifying
domain-specifipropertief codegeneratedby AUTOFIL-
TER. In particular we considerthe optimality proof intro-
ducedin the previous section— of the minimizationof the
meansquarecerror. Despitethe apparensimplicity of the
codein Figure 3 that AUTOFILTER generatesthe proof of
optimality is quite complex. Themainprooftaskis to shav
thatthevectorxhat (k) (correspondindo i, in theprevious
section)is thebestestimateundersimplifying assumptions,
of the statevectorz;, attime k. Thisis a standardoroofin
stateestimationandis usuallypresentedn booksasanin-
formal mathematicaproof several pageslong. We sketch
the proofin this section,emphasizinghoseaspectsvhich
areparticularlyrelevantfor automatingheproof, especially
theassumptions

The very first assumptiormadein all booksis that the
initial estimates#, and P, arethe bestprior estimate
andits error covariancematrix (thatis, E[(zo — &g )(zo —
£y ) 7)), respectiely. At agiventime k, if Z; is the best
prior estimatethen one can use equation(2) to conclude
that the most probablemeasuremengrroris z, — Hyz,, .
Another assumptionis that “the bestestimateis a linear
combinatiorof thebestprior estimateandthe measurement
error”. Formally, this saysthatthebestestimatet;, is some-
wherein theimageof thefunctionz (y) := Ay.(Z, +y *
(zr — HyZ;,)), wherethecoeficienty is amatrix having as
mary rows asz, andasmary columnsasrows z. We are
looking for the y correspondindo the minimum error co-
variancematrix, Py (y) := E[(z) — &1 (y)) (zx — £1(y)) 7],
thatis, the solutionof the derivative of P (y) with respect
to y*. In fact, differentiationof matrix functionsis a com-
plex field thatwe partially formalizedandwhich we cannot
coverhere butit is worthmentioningjn orderfor thereader
to anticipatethe non-triviality of this proof, thatthe y giv-
ing the minimum of Py (y) is the solution of the equation
d(trace( P, (y)))/dy = 0, wherethe traceof amatrixis the
sum of the elementson its first diagonaland for a (stan-
dard) function f(y11, y12, ...) on the elementsof a matrix

4Technically speaking,one shouldalso take the secondderivative to
shaw that the solutionis indeeda minimum, but this stepis considered
“obvious” andconstantlyskippedby experts.

y, its derivative df /dy is the matrix (df /dyi; | vij € y)
having the samedimensionsasy. Assumingthat P, is the
error covarianceof the bestprior estimateof Zy, thatis,
E[(z), — & )(zr — ;) "], thenafter calculations(which
formally involve severalthousand®f usesof basicproper
ties of matricesanddifferentiationasarguedin Section5)
onegetsthe solution

Ky := P, H] (H,P, H] +Ri)™%,

which is what line 3 of our programin Figure 3 calcu-
lates.Onecanalsocalculatethe bestestimatenow, namely
Zx (K), whichis whatline 4 of our programdoes,andalso
the error covariancematrix of the best estimate,namely
P, (K), whichis whatline 5 does;noticethatthelattercal-
culationsalsotake severalthousand$asicproof steps.

In orderto completethe proof, oneneedsto show that
#,,, and P, , arethebestprior estimateandits error co-
variancematrix attime k + 1, respectrely. Theformerfol-
lows by anotherunanimouslyacceptecassumptioramong
experts,namelythatthe bestprior estimateat the next step
follows the stateequation(1) usingthe bestestimateat the
currentstate but wherethenoiseis ignored theintuition for
this assumptioris thatthe currentbestestimateis random
arnyway, so the noisewith mean0 canbe ignored. We do
thisin line 6. Thelattercanbealsoobtainedby calculations,
alsotakingseveralthousandasicproof stepstransforming
theexpressionP,_ ; = E[(zr41 — 21y 1) (@41 — F3pq) ']
by replacingi+1 asin equation(1) andz,_, ; asin line 6.

4. A Framework for Formalizing the Proof

To generateand automatically certify proofs such as
the one given in the previous section, we needto for-
malize the domain knowledge, which includes matrices,
functions on matrices,and differentiation. We first dis-
cuss the formal languagethat we chose for this pur-
pose together with its underlying logic. ~The reader
can download our abstractdomain formalization from
http://ase. arc. nasa. gov/ gr osu/ downl oad/ kal man.



4.1 Maude and Membership Equational Logic

Maude[4] is a freely distributed high-performancex-
ecutablespecificationsystemin the OBJ [7] family, sup-
portingbothrewriting logic [9] andmembershigquational
logic [10]. Becauseof its efficient rewriting engineand
becauseof its metalanguagend modularizationfeatures,
Maudeis an excellenttool to develop executableerviron-
mentsfor variouslogics, modelsof computationtheorem
provers,andevenprogramminganguages.

Membershipequationallogic (MEL) [10] is a variant
of equationalogic which, in additionto atomicequalities
t = t', allows atomic membeships¢ : s statingthat the
termt hasthe sorts. In Maude,conditionalequationsand
membershipsiredeclaredwith the keywordsceq andcnb,
respectiely, while the unconditionaloneswith eq andnb.
For example,the conditionalmembershignb X/ Y : Real
i f Y=/=0 stateshatfor ary realsx andy, x/ v is areal, or
hasthe sort Real , if Y is non-zero. Sortsare groupedin
kindsandoperationsaredefinedonly on kinds, but Maude
providesconvenientsyntacticsugarconventions.For exam-
ple, a subsortdeclarationsubsort Nat < Real iS Syntac-
tic sugarfor the membershipnb X : Real if X : Nat,
theoperationdeclaratiorop +_ : Real Real -> Real iS
syntacticsugarfor® cnb X+Y : Real if X : Real and Y

Real , and[ Real ] is a shorthandor the kind containing
the sortReal ; the operationdeclaration/_ : Real Real
-> [Real ] saysthata quotientterm might not have a sort,
i.e., it might be undefinedn a partial algebraicterminol-
ogy. Thereis an automatictranslationfrom partial equa-
tionallogic, or morepreciselyfrom its moregeneralariant
called partial membeship equationallogic (PMEL), into
MEL exploredin detailin [10, 11]. Maudes implicit sup-
port for partiality was a major factorin choosingMaude
asa logic andimplementatiorenginefor our certification
tools,becausaill the specification®f abstractiomainghat
we encounteredo far involve partial operators.However,
we warn the readerthat Maude doesnot explicitly sup-
port PMEL, i.e., it is a total MEL enginé. That means
that, for exampleif onedeclareghe equationeq X/ (V/ 2)
= (x*2)/ Y thenoneshouldnot expectMaudeto implicitly
prove that v/ z is definedbefore applying the equation;it
is the users responsibilityto testthis, i.e., to usean equa-
tion of theformceq X/ (Y/2) = (X*2)/Y if Y/Z: Real.
Sincewe usepartial specification®ften and sinceit is so
easyto omit suchmembershighecks we have developed
anautomaticcriterionthatcheckswhethera MEL theoryis
duple, i.e., if it canbesafelyregardedasa specificationn
PMEL [11]. Our200axiomabstracdomainpresentechext
passedhe duplex criterion,sowe know that Maudes total

5Togethemwith anappropriateoperationdeclaratioron kinds.
6We are not aware of ary tool providing explicit executionalsupport
for partialequationalogics.

reasonings soundfor our domain.
4.2 Matrices

The main problemin automatingequationalproofs is
thatequationabxiomscanbeusedbothforwardsandback-
wards, so rewriting aloneis not sufficient and searchcan
quickly becomentractable Equationakeasoningvith ma-
tricesis extensvely usedin all stateestimationoptimality
proofs that we are aware of. In fact, most of the proof
stepsin our scripts and all our lemmasare equational.
Whatis lessobviousis that mostof the operationsaandax-
ioms/lemmasn matrixtheoryarepatrtial. For example,ad-
dition is definediff thetwo matriceshave the samedimen-
sions,multiplicationis definediff thenumberof columnsof
thefirst matrixequalshenumberof rows of thesecondand
thecommutatvity andassociatiity of additionhold trueiff
the matricesinvolved have the samedimensions.It wasa
big benefit,if notthebiggestthatMaudeprovidedsupport
for partiality, thusallowing usto compactlyspecifymatrix
theoryanddo partial proofs. The partial infix operationof
multiplication andthetotal transpos@perationaredefined
asfollows:

op _*_
op ntrans :

Matrix Matrix -> [Matrix]
Matrix -> Matrix .

In orderto definetheirsemanticandpropertiesywe need
two (total) operationghatgive the numbersof columnsand
rows of a matrix that we denotec andr, respectiely, of
arity Matri x -> Nat. Now we canexpressdefinednessf
multiplication togetherwith appropriateconditionalequa-
tionscomputingthe new columnsandrows:

cmb P* Q: Mtrix if c¢(P) ==r(Q .
ceqg c(P* Q =c¢c(Q if P* Q: Mtrix .
ceqr(P*Q =r(P) if P* Q: Matrix .
Axioms relating variousoperatorson matricesare also
neededsuchas:
ceq ntrans(P * Q = ntrans(Q * mtrans(P)
if P* Q: Matrix .
togethemwith morethan50 othersmostof themconditional
andinvolving memberships.

4.3, Functions on Matrices

Onestepin optimality proofsis statingthatthe bestes-
timateof the actualstateis a linear combinationof the best
prior estimateandthe measuremergrror. The coeficients
of this linear dependeng is calculatedsuchthat the error
covariancematrix is minimized. Therefore beforethe op-
timal coeficient is calculated,andin orderto calculateit,
the best estimatevector is regardedas a function of the
form Ay.({prior estimaté + y * (measuementerror)). In
orderfor this functionto be well defined,y mustbe a ma-
trix having appropriatedimensionsas given in Section3.



Hence,we needto formally definefunctionson matrices
togetherwith their properties. We do it by declaringnew
sorts,mat ri xVar andwat ri xFun, thefirst beinga subsorof
Mat ri x, togethemwith operationdor definingfunctionsand
for applyingthem,respectiely:

MatrixVar Matrix -> MatrixFun .
Mat ri xFun Matrix -> [Matrix]

op /\_._
op _ _ :
Appropriate(conditional)axiomsfor functionsarespec-
ified, alsotakinginto accountpartiality, suchas:
ceq (/\y. (P+rQ)(X) = (/\y.P)(X) + (/\y.Q(X)
if P+Q: Matrix .
ceq (/\y.y)(X) = X
if c(X) ==c(y) and r(X) ==r(y) .

amongmary others.
4.4. Differ entiation

If Pisasquarematrixthentraceg P) isthesumofall P’s
element®nthemaindiagonal Axiomatizationof functions
on matriceswith their derivativescanbe arbitrarily compli-
cated;our approachs top-dawn,i.e.,wefirst defineproper
tiesby need usethem,andthenprovethemfrom morebasic
propertieswhen possible. For example,the only property
thatwe usedsofarlinking optimality of estimatedgo differ-
entiationis thata matrix K minimizesa function \y.P iff
(d(trace(Ay.P))/dy)(K) = 0. For thatreasonjn orderto
avoid goinginto deepaxiomatizabilityof mathematicsywe
have just defineda “derived” operation

op d(trace_)/d_ : WMatrixFun MatrixVar

-> MatrixFun .
whichgivesdirectly thederivative of thetraceof afunction,
anddeclaredsomepropertiesof it, suchasthe conditional
equation
ceq d(trace(/\Y.(Y*P)))/d(Y) = /\Y.ntrans(P)
if YP: Matrix and r(Y) == c(P) .
stating that the derivative of the function \y.(y * P) is
Ay.PT wheneaer y + P is a well-definedsquarematrix.
One could, of course,prove this property from more ba-
sic propertiesof traces,functionsand differentiations but
onewould needto adda significantbody of mathematical
knowledgeto the system We will eventuallydoit whenour
synthesisindcertificationsystemsecomeamorestable but
for now we preferto just give theseprovablepropertiesas
axiomsof theabstracdomain.

5. A Formal Optimality Proof

In this sectionwe explain how we formalizedthe infor-
mal proofin Section3, usingthe axiomatizatiorof the ab-
stractdomainin Section4. This formalizationwas done
manually usinganinteractve theorenproverimplemented
in Maudeand presentedelon. This proof was a painful

andtime consumingtask, not only becauseof its mathe-
maticalcompleity, but alsobecausehe axiomatizationof

theabstractiomainchangedftenaswe understoodhe do-

main and the requirementdor our proofs better We are
currentlyworking on anothemproof of optimality, for infor-

mationfilters [2], which follows the samepattern. One of

themajorbenefiteof synthesizingertifiably correctcodeis

thatsuchproofswill be doneby trainedexpertsonly once

storedin a genericform in the synthesisengine,andthen

reused/instantiatethary timesin the generatecannotated
programs.

5.1 ThelTP Tool

The ITP tool [3] is an experimentalinteractive induc-
tive theoremprover implementedby metalerel program-
ming andrewriting in Maude. The input of ITP is a pair
specification |- sentence, calledagoal. If thesentence
can be automaticallyproved by applying the equalitiesin
the specificationas rewriting rules thenthe usergetsthe
desiredq. e. d. messageptherwise somesimplified form
of the sentencdo be provedis returnedandthe useris ex-
pectedto provide hints,suchasfor exampleapply -distr
to 1.2 at 2. 2.3 which saysthatthe distributivity axiom
shouldbe appliedbackwardsto proof task number1. 2 at
position2. 2. 3. Simplificationsby rewriting are automati-
cally doneaftereachhint. We have usedhundredsof hints
in our optimality proofs presentechext. Many new proof
taskscanbe generatedluring a proof dueto lemmaintro-
ductionand/orinduction. Therearerigorouscorventionsin
ITP for labellingtheaxiomsandtheprooftasks,andalsoin
accessingpositionsin terms,but thesearenotimportantfor
this presentatiorand may changein the nearfuture asITP
improves,sowe omit them.

5.2 Specifyingthe Statistical Model

In orderto reasoraboutthe codein Figure3, onemust
know wherethe matricesz, h, etc., comefrom and what
is their abstracimeaning,or in otherwords, oneneedsthe
specificationof this particularKalmanFilter togetherwith
all its assumptionsTheseareneededn additionto the ab-
stractdomainknowledgein Section4. Therefore thevery
first stepis to expandthe abstracdomainwith this Kalman
Filter's specification,that we denote SPEC, which de-
claresall the matricesand vectorsinvolved togetherwith
theirdimensionssuchas

ops x phi w: Machinelnt -> Matrix .

ops z h v : Mchinelnt -> Matrix .

ops r g : Machinelnt -> Matrix .

ops n mk : -> Machinelnt .
var K : Machinelnt .
eq r(x(K)) =n.
eq r(phi(K)) =n .

eq c(x(K))

=1.
eq c(phi(K)) =

n.



eq r(w(K) =n. eq c(WMK)) =1.
eq r(z(K)) = m. eq c(z(K)) =1.
eq r(h(K)) = m. eq c(h(K)) =n .

r(v(K)) = m. eq c(v(K)) =1.

eq
aswell asmodelequations/assumptiorsichas
eq x(K + 1) = (phi(K) * x(K)) + wK) .

eq z(K) = (h(K) * x(K)) + v(K) .
eq r(K)y = E[v(K) * ntrans(v(K))]
= WK * ntrans(w(K))]

eq q(K)

Other axioms/assumptionthat we do not formalize here
dueto spacdimitation includeindependencef noise,and
thefactthatthebestprior estimateattimek + 1 istheprod-
uct betweenphi (k) andthe bestestimatecalculatedprevi-
ously at stepk. One major problemthat we encountered
while developing our proofs was that theseand other as-
sumptionsnot mentionedhereare sowell (andeasily)ac-
ceptedby expertsthat they don't even make their use ex-
plicit in their informal proofs; this was of courseunavoid-
ablein the context of formal proving, sowe hadto declare
themexplicitly asaxioms.

This specification has about 35 axioms/assumptions
and the interestedreadercan download it from the URL
http://ase. arc. nasa. gov/ gr osu/ downl oad/ kal man. A
major advantageof our approacto combinesynthesisand
certificationis thatspecificationganbegeneratedutomat-
ically from the problemdescriptioninput to the synthesis
engine.

5.3 Modularizing the Proof

In orderto machinecheckthe proof of optimality, the
proof mustbe decompose@nd linked to the actualcode.
Thisis doneby addingthe specificatiorabove at the begin-
ning of the codeandaddingappropriatdormal statements,
or assertionsas annotationdbetweeninstructions,so that
one can prove the next assertionfrom the previous ones
andthe previouscode.Proofsarealsoaddedasannotations
whereneeded.Notice that by “proof” we heremeana se-
riesof hintsthatI TP usesto guidethe proof. The resulting
annotatedodeis shovn in Figure4, wherewe replacedhe
moreformal (andlonger)assertiondy English. The proof
assertionsn Figure4 shouldbe readasfollows: proof as-
sertionn is aproof of assertiom in its currentervironment.

The bestwe canassertbetweeninstructionsl and 2 is
thatxhat mi n(0) andpni nus(0) areinitially the bestprior
estimateanderrorcovariancematrix, respectiely. This as-
sertionis anassumptionn SPECy andso canbeimmedi-
atelychecled.

Between 2 and 3 we assertthat xhatnin(k) and
pm nus(k) arethe bestprior estimateanderror covariance
matrix, respectiely. This is obvious for the first iteration

of theloop, but needso be provedfor the otheriterations.
Thereforewe do animplicit proof by induction.

The assertiorafterline 3 is thatgai n(k) minimizesthe
covariancematrix of the error betweerthe real (unknown)
stateof thesystemanda linearcombinatiorof thebestprior
estimateand our currentmeasuremengrror. This formal
assertioris rathertechnicalandtakesa few lines of Maude
code,soit is notworth shaving it here.It was,however, the
partof the proofthatwasthe mostdifficult to formalize. Its
proofscriptcontains? lemmasandit has142stepsthatis,
thereare 142 usesof labeled(conditional)sentencesThis
meanghatthereareatleast142 placeswhereanautomatic
equationatheoremprover would try both directionsof an
equation— 242 combinations. Thesenumbersmake us
stronglybelieve thatthereis almostno chanceto getthese
proofsautomatically Note thattherearemary mary more
unlabeledrewritings appliedin betweenmostof themto
prove the conditionsof others. Takinginto accountthe 15
secondshatI TP spento checkthe142linesof proofscript,
thespeedf Maude(3 million rewritespersecondandpes-
simisticallyassuminghatits ITP slowsit down 1000times,
thenwe predictthatthereareat least45,000usesof the ax-
iomsin the abstracdlomainand SPEC in this proof.

Theassertiorbetweerlines 4 and5 saysthatxhat (k) is
the bestestimateof the actualstateandfollows now imme-
diately from the previous assertion.After line 5, however,
we have the assertiorthatp(k) is the errorcovariancema-
trix of the bestestimateandits proof needs4 lemmasand
hasabout110 proof script steps. After line 6, dueto an
assumptiorin SPECyr, we canassertandeasilyshav that
xhat mi n(k+1) is thebestprior estimateat time k+1, which
togethemwith theinstructionon line 7 impliesthe assertion
betweenlines 2 and 3, sowe have completedour proof of
optimality of the codein Figure3 by induction. It took ITP
a bit morethan 30 secondgo checkall this proof, which
malkesus predictatleast100,0000f usesof axioms.

6. SynthesizingAnnotated Kalman Filters

AUTOFILTER synthesizesode by exhaustve, layered
applicationof schemas A schemais a programtemplate
with openslotsand a setof applicability conditions. The
slotsarefilled in with codefragmentsby the synthesisys-
tem calling the schemagecursvely. The conditionscon-
strainhow the slotscanbefilled — they mustbe provento
holdin the givenspecificatiorbeforethe schemacanbeap-
plied. Someof the schemagontaincallsto symbolicequa-
tion solvers,otherscontainentire skeletonsof statisticalor
numericaklgorithms.By recursvely invokingschemasand
composingthe resultingcodefragments,AUTOFILTER is
ableto automaticallysynthesizegprogramsof considerable
sizeandinternalcompleity.

Figure 5 givesan abstractionof a top-level schemafor



/* Specification of the state estination problem
about 35 axi ons/assunptions in Maude */

1. input xhatmn(0), pmnus(0);
/* Assertion 1: (in English)

xhat mi n(0) and pminus(0) are the best prior estinate and its error covariance matrix */

2. for(k,0,n) {

/* Assertion 2: (in English)

xhat mi n(k) and pmi nus(k) are the best prior estinate and its error covariance matrix */

3. gai n(k)
/* Proof assertion 3:
(lem (I (pm nus(k))) =(n) to (1) .)

(apply assertion-1-2 to (1 . O .

(apply pminuskntrans to (1) at (1 .
(apply comm+ to (1) at (1. 2) .) */
/* Assertion 3: (in English)

= pminus(k) * mtrans(h(k)) * minv(h(k) * pmnus(k) * nmtrans(h(k)) + r(k));
(142 1 TP hints including those bel ow)

1) at (1) .)
. the 138 other hints are omtted ...
2.

1.1.1) )

gain(k) mninmzes the error covariance matrix */

4. xhat (k)
/* Proof assertion 4: (... omtted) */
/* Assertion 4: (the main goal)

xhat (k) is the best estimate */

5. p(k) := (id(n)
/* Proof assertion 5: (...
/* Assertion 5:

om tted;

;= xhatmin(k) + (gain(k) * (z(k) -

(h(k) * xhatmin(k))));

- gain(k) * h(k)) * pmnus(k);
110 I TP hints) */

p(k) error covariance matrix of xhat(k) */

6. xhatmn(k + 1)
/* Proof assertion 6: (...
/* Assertion 6:

;= phi (k) * xhat(k);
omtted) */

xhatmn(k + 1) best prior estimate at tinme k + 1 */

7. pmnus(k + 1)
/* Proof assertion 2: (...
8. }

= phi (k) * (p(k) * nmtrans(phi(k))) + q(k);
omtted; 31 ITP hints) */

Figure 4. Annotated Kalman Filter code calculating the best estimate .

generatingalmanFilter code.name(%) areschemaslots.
They arefilled in by anassignmenof theform %name :=

. In somecasesthe top-level schemawill fill slotsdi-
rectly. In othercasesthe slotsarefilled by recursvely in-
voking otherschemasThe numberdn squareparentheses
referto line numberdn Figure3. Thetop-level schemagen-
eratesatemplatefor eachline in Figure3 whichis filled in
by recursvely invoking otherschemas.Note that this can
resultin codethatis substantiallydifferentfrom thatgiven
in Figure3 but still implementgsomevariantof) a Kalman
Filter. For example theslotfor pr opagat eEst i mat e would
befilled in differentlyfor a standardKalmanFilter thanfor
aninformationfilter or anextendedKalmanfFilter. Slotsin
Figure5 without associatedine numbersarenotimportant
for the purposesof this paperbut generallyare concerned
with book-keepingtaskssuchasstoringthe estimatesn an
outputvector, updatingtime-varying matriceson eachiter-
ation,etc.

The schemaecursvely invokesotherschemado fill in
its slots, e.g., to generatethe propagat eEsti mate code.
For certificationpurposesthe schemamust also generate
a proof thatthe schemais correct— in this case the opti-
mality proofin Figure4. In orderto generatehis proof, the
schemasare extendedto generatealso the assertionsaand

proof assertiondrom Figure 4. In this way, eachline of
codegenerateccomesoptionally with an assertionand/or
theproofthatthe assertiorholds. The mechanic®f adding
the proofs to the schemass mostly trivial. Eachline of
codegenerateds, in ourintermediatdanguagepf theform
codefragment(CodgAttributes)whereCode is the actual
codeand Attributes is alist of artifactsthatis generated
alongwith the code. Attributescanbe commentgshat ex-
plain the line of codeor they can be assertionsor proof
assertions.Currently the proof assertionsn the attributes
are ITP proof scripts,i.e., a sequenceof applicationsof
axioms/lemmagalongwith variablesubstitutions).These
proofs typically are very complex and involve the explo-
ration of a large searchspace. The hints in the high-level
proof scriptsalways occur at a choice point in the proof.
Hence,given the proof script, it is possibleto reconstruct
the entire proof without the needfor ary search.The code
in Figure4 containingall the annotationscan be found at
http://ase. arc. nasa. gov/ gr osu/ downl oad/ kal man. The
reconstructiorof the entire proof is currently donein the
certifier, but it could just aseasily have beengiven explic-
itly in theschemaAn approachhatweintendto investigate
soonis to storetheseproofscriptstogethemwith theschemas
in the AUTOFILTER knowledgebase. The full proof can



/* applicability conditions */
process noi se is Gaussian
neasur enent noi se i s Gaussi an
process/ neasur enent noi se are i ndependent

/* set up tenplate */

result := kal man(local (%,
initialize(%,
| oop(9%,
postloop(%)),

% oop : = for(pvar,O,n, Il [2]
updat e(zupdate(%,
phi updat e( % ,
hupdat e(%,
gain(9%, /1 [3]
estimat eUpdate(%, Il [4]
covar Updat e( %), /1 [5]
storeQut put (%,
propagat eEstimate(%, // [6]
pr opagat eCovar (%)) 1117
/* fill in some slots */

/* recursively invoke schemas to fill
remai ning slots */

Figure 5. (Part of) a Kalman Filter schema

thenbereconstructedt synthesigime andthe entireproof
can be addedto the code (ratherthanjust the ITP hints).
This would allow the certifierto be asminimal aspossible
— it would merelybe a proof cheder that canbe verified
ratherthana morecomplex hint interpreterasnow.

7. Certifying Annotated Kalman Filters

There are varioustypesand levels of certification, in-
cluding testingand humancodereview. In this paperwe
addresscertifying conformanceof programsto domain-
specificproperties. The generalproblemis known to be
intractable but by usingprogramsynthesigo annotatecode
with assertionsndproof scripts,complex propertiesanbe
certifiedautomatically Our long termgoalis to developan
automatedtateestimationcertifierwhich:

e issimple,sothatit canbeeasilyvalidatedby ordinary

codereviewers;

e isgeneralsoit workson alargevarietyof programs;

e reduceshe amountof domain-specifiknowledgeto

betrustedto afew easilyreadablepropertiessothatit
canbevalidatedby domainexperts;

¢ isindependentrom thedomain-specifisynthesisys-

tem, so that the likelihood that the two systemshave
common abstractdomain errors is minimized and
thereforecanbe safelyusedtogether

Therearesensibletrade-ofs betweernthesedesiredfea-
tures. For example,if the certifier usesa specializecthe-

orem prover thenthe synthesisenginecan generatefewer
and simplerannotationsput the certifier is itself comple
andthe certificationprocesscantake a long time. On the
otherhand,if the certifier is a simple proof checler then
certificationcanbedonerelatively quickly andcanbe more
easily acceptedeven by skeptical users,but one needsto
generatevery detailedproofs of correctnessogetherwith
thecode.Thecertifierdescribechext usesa combinatiorof
theoremproving andproof checking.

Our currentcertifiertakesasinputa PMEL specification
of the abstractdomainand an annotatedorogramand re-
turns“yes” or “no”. It extractsproof taskstogetherwith
their proof scriptsfrom the annotatedprogram,and then
callsMaude5ITP tool to validatethem. Theprooftasksare
generatedrom both annotationaindcode,while the proof
scriptsare extractedfrom annotations.lt answers'yes” if
andonly if all the proof scriptsarevalid for the proof tasks
thatit generatesThereforelike in proof carryingcode the
code, the assertionsandthe proofs are interdependentso
onecannotmaliciouslymodify eitherof them.

The stateestimationcertifier is very restrictve at this
stage but this is acceptabldecauseve only useit on pro-
gramssynthesizedvith AUTOFILTER. It only acceptgpro-
gramswritten in a genericmatrix-assignmenbasedpro-
gramminglanguagdik e the onein Figure 3; additionally
thoseprogramsare not allowed to redefinevariables(ex-
cepttheloop counter)andmustconsistof exactly oneloop
which iteratively calculateshe bestestimate. Thesepro-
gramsmust be annotatedike in Figure4, i.e., they must
startwith an annotationcontainingthe specificationof the
Kalman filter for which the subsequentodeis claimed,
andthencontainlines of code,proof scriptsandassertions.
All the annotationsuse directly Maude and/or ITP nota-
tion. Eachassertiorthat cannotbe proved by straightfor
wardrewriting shouldcomewith its proofscriptannotation.
This simpleapproachworks becauseur synthesizedtate
estimationprogramsarenot concurrent.

Thecertifierworksasfollows. It first extendsheabstract
domainspecificationwith the specificationof the program
(extractedfrom the beginning of the program).Thenit fol-
lows the stepsof a proof by mathematicalnductionon k,
theloopindex. More preciselyit first proof checksthefirst
assertionn thecodein whichit replaces by 0. Thenit in-
crementallyvisits eachline of codein the loop, addingthe
assignmentto the specificatiorasordinaryMEL equations
andproof checkingthe assertionsIn orderto proof check
anassertionit callsthe ITP tool with the currentspecifica-
tion, theassertionandthe proof scriptprovidedin thecode
asannotation.At the endof theloop, it alsoproof checks
thefirst assertionin theloop in whichk is replacedoy k+1.

Therefore,our currentcertifier simulatesthe execution
of the codemodifying its environment(specification)and
checkinga provided proof whenever an assertioris found.



Assumingthat the abstractdomainand the Kalman filter
are correctly specified,thenfor any annotatedprogramas
above our certifier returns“yes” if and only if the pro-
gram calculatesthe bestestimateat eachiteration. No-
tice that the certifier was specifically designedto be to-
tally independenfrom the synthesisengine. The proofs
andtheannotationareordersof magnituddargerthanthe
realcode,but fortunately they canbe automaticallygener
atedby the synthesisengineoncegenericproofs are pro-
vided with the programschemasThe ITP proof tasksand
their proof scripts generatecautomaticallyby our current
certifier (about2300 lines of Maude/ITP)can be seenat
http://ase. arc. nasa. gov/ gr osu/ downl oad/ kal man.

8. Conclusionsand Futur e Work

In this paper we have shovn how to extend program
synthesisystemso generataot only codebut alsoproofs
of propertiesof that code. This work was carriedout in
the context of AUTOFILTER, a synthesizepf stateestima-
tion programswhich wasaugmentedo outputa proof that
the codeimplementsan optimal estimator This proofis a
highly complex proof that cannotbe proved automatically
but by encodingthe key stepsof the proof in AUTOFIL-
TER'sknowledgebaseijt is ableto generate proofthatcan
easilybe checled by anindependentertifier Suchresults
will encouragehe acceptancef codegeneratorsn safety-
critical domainssincethe generatorsvill producenot only
the codebut alsocertificateshatthe codeis correct.

Currently our work hasfocussedn formalizingthe do-
mainknowledgerequiredfor the certificationproofsandon
generatinghe proof for the standardKalmanFilter. How-
ever, since AUTOFILTER generates wide rangeof varia-
tionsof KalmanFilter implementationsit mustalsogener
atea wide rangeof proofs. Our hopeis that the structure
in theseproofsis sufficiently similar suchthatthe effort re-
quiredin formalizing the proofsandencodingthemin the
knowledge baseis manageable.We are currently testing
outthis hypothesidy consideringkalmanFilter variations
suchastheinformationfilter.

The certifier usedin the work describeds itself a sub-
stantialprogram,including the Maudesystemandthe ITP
tool. MaudeandITP areusedbothto generatehe proofs
andto checkthem. For practicalpurposesa certifier must
be assimpleaspossible.Certificationauthoritieswill only
trusta certificationtool if it hasbeenformally verified,and
henceit must be small. This meansthat whilst Maude
andITP aregoodgenericenginesfor developingdomain-
specificproofsscriptsof individual schemasthefinal prod-
uctwill mostlikely incorporateakernelcertifierwith amin-
imal knowledgebaseandminimal proving technology
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